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Abstract
A totally asymmetric exclusion process with N particles on a periodic one-
dimensional lattice of L sites is considered where particles can move one or
two sites per infinitesimal timestep. An exact analysis for N = 2 and a mean-
field theory in comparison with simulations show even/odd oscillations in the
headway distribution of particles. The expression ‘headway’ is understood as
the number of empty sites in front of a particle. Oscillations become maximal
if particles only move at their maximum possible speed. A phase transition
separates two density profiles around a generated perturbation that plays the
role of a defect. The matrix-product ansatz is generalized to obtain the exact
solution for finite N and L. Thermodynamically, the headway distribution yields
the mean-field result as N → ∞ while it is not described generally by a product
measure.

PACS numbers: 02.50.Ey, 05.50.+q, 05.60.Cd, 66.30.Lw

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Driven-diffusive systems such as the (totally) asymmetric simple exclusion process (ASEP)
have been extensively used to model traffic flow phenomena [1]. It is defined on a one-
dimensional lattice in which particles can move only in one direction with respect to the
exclusion rule which implies that at most one particle can stay at a single site. From a
theorist’s point of view these models are especially interesting in respect of phase transitions,
such as jamming and condensation transitions and their solvability at least for the steady state.
Usually, the rather sophisticated models that claim to reproduce real traffic features are not
available for exact mathematical descriptions. More important are the minimalist models that
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lead to an understanding of the underlying physics. The ASEP in one dimension with periodic
boundary conditions is fairly simple and has a uniform stationary measure [2]. There are,
however, some generalizations of the ASEP with periodic boundary conditions that lead to
phase transitions. An example is the ASEP with a single defect particle that can itself move
forward on empty sites and can be overtaken by normal particles [3]. The defect can be
thought of as a truck that moves in an environment of cars [2]. Another example is particle
disorder: if any of the particles has an individual fixed hopping rate one might observe a
phase transition from a fluid into a condensed phase [4]. Finally, phase transitions have been
studied in asymmetric exclusion models in which the hopping rate depends on the empty space
ahead. These models can often be related to the zero-range process and the interactions are
normally long ranged when condensation transitions occur [5, 6]. The ZRP itself allows for
an arbitrary number of particles per site and the single-particle hopping rate depends only on
the occupation on the departure site [6]. This has been generalized to models in which more
than one particle can move. A condition on the hopping rates has been derived for the steady
state to take a simple factorized form [7].

In the following section, we define a simple traffic model, which is a generalization of the
ASEP in the sense that particles can move one or two sites per infinitesimal timestep. We find
that the system leads to oscillations in the distribution of headway which become maximal
when it is impossible to move only one site if there are more empty sites available. Here the
system evolves in special regions of the configuration space that gives rise to a phase transition.
Although it is a very simple conserving process on a ring with one species of particles, no
overtaking and short-range interactions, it is capable of producing a phase transition and has a
non-trivial steady state that is obtained exactly. We investigated also the process with parallel
update and found the matrix-product stationary state, see [8].

2. Model definition

The general process we are going to investigate is defined on a one-dimensional lattice with L
sites, enumerated l = 1, 2, . . . , L. Each site l may either be occupied by one particle (τl = 1)

or it may be empty (τl = 0). We impose periodic boundary conditions and let the system
evolve in continuous time. Particles can move one or two sites to the right according to the
following rules:

100 → 010, at rate p1,

→ 001, at rate p2,

101 → 011, at rate β.

(1)

The parallel-update version of this process has been considered in [9]. Note that the total
number of particles N is fixed due to the allowed transitions and boundary conditions. Some
simple cases are already known: for example, p1 = β was studied in [10] and turned out to
have a uniform stationary state. For p2 = 0 one finds [10, 11] that the weights (for β > 0) are
of the pair-factorized form: P(τ1, τ2, . . . , τL) = ∏L

l=1 t (τi, τi+1) with some simple two-site
factors t (τi, τi+1). A mapping onto a mass-transport model shows that these are the only cases
with factorized steady state (see section 5.3).

3. Exact steady states for two particles

In the following, we consider (1) with only two particles on a ring. The quantity of interest
is the un-normalized steady-state weight f (m, n), denoting that one particle is followed by
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m and the other by n holes. Analysis of small systems immediately shows that these weights
obey the following second-order recursion relation:

f (m, n) = ωL(p1)f (m − 1, n) + p2f (m − 2, n),

for m � n and m + n = L − 2 � 3, (2)

with the piecewise defined function

ωL(p1) =
{
p1, for L even,

1, for L odd.
(3)

Alternatively one could write the problem as a simple symmetric random walk on a line with
fixed boundaries. However, we prefer to start with the recursion from which one easily obtains
the solution also for small systems while in the random walk formulation one had to make
case differentiations. Consider the initial values of the recursion: for L = 3 there is only
one weight: f (0, 1) = 1. Then for L = 4 the master equation leads to one single condition,
namely f (0, 2)p1 = f (1, 1)β with solution f (0, 2) = β and f (1, 1) = p1. Using these
values one can check the results for L = 5: f (0, 3)(p1 + p2) = f (1, 2)(p2 + β) has solution
f (0, 3) = p2 + β and f (1, 2) = p1 + p2. It is easily seen that the same results are obtained
by the recursion. This way one can check any case with larger L. Generally, one can choose
one rate as 1 and it is convenient to set p1 = 1 to get rid of the even/odd dependence of
the lattice size that occurs in (2). Concluding, we take for the study of the two-particle case
ωL(p1 = 1) ≡ 1. In terms of the functions

yn :=
(

1 +
√

1 + 4p2

2

)n

+

(
1 − √

1 + 4p2

2

)n

(4)

the solution to (2) (for m � n and m � 1) is

f (m, n) = βym+n + (2p2 + 1 − β)ym+n−1

1 + 4p2
+ (−1)n−1 (1 − β)pn

2ym−n

1 + 4p2
. (5)

One sees that the first term only depends on n + m and therefore it is constant for given system
size. The second term has a pre-factor (−1)n−1 which indicates that in general there are
oscillations. Thus the weights f (m, n) depend on the parity of n. The probability for a certain
configuration with two particles is given by P(m, n) = Z−1

m+n+2,2f (m, n), where for system

size L the normalization ZL,2 = ∑L−2
m=0 f (m,L − 2 − m) is

ZL+1,2 =
[

βL

1 + 4p2
− 2(1 − β)(2p2 + 1)

(1 + 4p2)2

]
yL−1 +

[
(2p2 + 1 − β)L

1 + 4p2
− 2p2(1 − β)

(1 + 4p2)2

]
yL−2.

(6)

One might think that the feature of oscillations comes from the presence of a finite number of
particles, so we investigate the thermodynamic limit within a mean-field theory.

4. Mean-field theory

In the following, an approximation for the steady state in the thermodynamic limit is derived.
Note that the thermodynamic limit implies N,L → ∞ with N/L = ρ remaining constant.
To take into account correlations between consecutive particles we write down an improved
mean-field theory: the quantity of interest is the probability P(m) to find a headway of m
empty sites in front of a particle. In the context of traffic-flow models this is referred to as
car-oriented mean-field theory (COMF) [12]2.

2 This formally corresponds to a mean-field theory in the corresponding mass-transport model (see section 5.3) and
neglecting correlations between adjacent masses.
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4.1. Theory for general parameter set

Without making any restrictions to the hop rates, the stationary equations read

(c + p2s)P (0) = βP (1) + p2P(2),

(c + p2s + β)P (1) = cP (0) + p1P(2) + p2P(3),

(c + p2s + p1 + p2)P (m) = p2sP (m − 2) + cP (m − 1) + p1P(m + 1) + p2P(m + 2),

for m � 2,

(7)

with the short-hand notations

s := 1 − P(0) − P(1) and c := βP (1) + p1s. (8)

We now introduce the generating function

Q(z) =
∞∑

m=0

P(m)zm. (9)

Summing up P(m)zm for m = 0, . . . ,∞ leads to a rational expression for Q(z) from which
a singularity at z = 1 can be removed. One obtains

Q(z) = (β − p1 − p2)P (1)z2 − wz − p2P(0)

p2sz3 + (c + p2s)z2 − (p1 + p2)z − p2
, (10)

with w := (p1 + p2)P (0) + p2P(1). A useful check of this equation is Q(0) = P(0) and
Q(1) = 1. The density ρ in the corresponding asymmetric exclusion process is

∂z(zQ(z))|z=1 =
∞∑

m=0

(m + 1)P (m) = ρ−1. (11)

This gives P(1) in terms of P(0) and ρ:

P(1) = [2p2(1 + ρ) + p1] P(0) − (4p2 + p1)ρ

(β − p1)(1 − ρ) − 2p2
. (12)

The remaining probabilities can be obtained from Q(z). The flow–density relation is
J (ρ) = ρ(c + 2p2s).

However, at this stage already one equation is missing. One needs an additional relation
between P(1) and P(0) to be able to express everything in terms of the density only. In fact,
the missing relation can be extracted from the generating function. Writing the numerator of
Q(z) in terms of its zeros z±

0 gives (β − p1 − p2)P (1)
(
z − z+

0

)(
z − z−

0

)
. The singularity in

the unit circle then has to be removed by z+
0 or z−

0 for Q(z) to be analytic [12]. This leads to
the missing relation between P(1) and P(0) [13].

4.2. A convenient choice of rates

We restrict ourselves here to the case where the coefficient of z2 in the numerator of Q(z)

vanishes, since there the mean-field predictions can be written in a very compact form and the
main features that we want to display are contained. Consider β = p1 + p2.3 Substituting this
into (10) and demanding that the denominator has the same zero as the numerator gives the
missing relation:

p2P(1)2 = p1P(0)(P (0)[1 − P(0)] − P(1)). (13)

3 The rate at which a particle changes its given headway is headway independent. The condition is weaker than the
condition for a factorized state (every configuration is equally probable if p1 = β).
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Figure 1. Headway distribution P(n) from a computer simulation with L = 1000 in comparison
with the mean-field result for p2 = 1. Left: p1 = 0.1, β = 1.1 and ρ = 0.1. Right:
p1 = 0.2, β = 1.2 and ρ = 1/3.

For Q(z) one gets the simple expression

Q(z) = pP (0)A2

pA2 − pAz − z2
, (14)

with A := P(0)/P (1) and p := p1/p2, which can nicely be expanded to obtain P(m).
Figure 1 shows the mean-field distribution for two different choices of parameters in
comparison with computer simulations. While P(n) decays rapidly, one sees the characteristic
even/odd oscillations which are well reproduced by the mean field.

4.2.1. The Fibonacci case. Remarkable is the case β = p1 + p2 = 2 with p1 = p2 = 1.
Then the probabilities P(m) are given by the Fibonacci numbers:

P(m) = P(0)

(
P(1)

P (0)

)m

Fm+1. (15)

Here one obtains from (13): P(1)/P (0) = (
√

5 − 4P(0) − 1)/2 and relating P(0) to the
density gives

P(0) = ρ

(1 + ρ)2

5 + 4ρ −
√

5 − 4ρ2

2
. (16)

Figure 2 shows the headway distribution for the Fibonacci case.

4.2.2. The choice p1 = 0. In (10) one sees that also P(1) = 0 reduces the numerator’s
degree to one. It has a zero at z = −p2(p1 + p2)

−1. We are interested in p2 > 0, so
take p2 = 1 without loss of generality. Demanding that the denominator has the same
zero yields (as the only physical solution) p1 = 0. The generating function reduces to
P(0)(1 + (1 − P(0))z2 + (1 − P(0))2z4 + · · ·)). So P(1) = 0 has the consequence that
P(2n + 1) vanishes generally and the process is realized only on the even sublattice in the
mean field. The relation to the density is

P(0) = 2ρ

1 + ρ
, (17)

and the flow simply reads

J (ρ) = 2ρ [1 − P(0)] = 2ρ(1 − ρ)

1 + ρ
. (18)
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Figure 2. Headway distribution P(n) from the mean-field theory for the Fibonacci case
p1 = p2 = 1 and β = 2 for ρ = 1/8 and 1/2 compared with computer simulations.

These results are completely equivalent to the usual ASEP where now particles always move
two sites and the density is appropriately rescaled.

5. Exact solution for the choice p1 = 0: maximal oscillations

We consider the process

100 → 001, at rate 1,

101 → 011, at rate β.
(19)

Physically, this is the case where every particle tries to move as far as possible with regard
to its maximum velocity. This is the limit in which the oscillations in the form of even/odd
effects become maximal. This type of process evolves into special regions of the configuration
space. We try to find the full solution for finite N and L from the matrix-product ansatz.

5.1. Unified solution for finite number of particles and sites

The state of the periodic system can be expressed by the sequence of headway: {n1, . . . , nN }.
We look for a product state of the form:

F(n1, n2, . . . , nN) = Tr
N∏

μ=1

Gnμ
, (20)

where Gni
is an operator representing particle μ followed by nμ holes. For a recent work on

the matrix-product ansatz see [14, 15]. It turns out that ansatz (20) (with a certain trace-like
operation Tr = tr‖·‖ to be specified below) yields the correct steady state, provided that the
involved operators fulfil the following quadratic algebra:

G2iG1 = G2i+1, (21)

G2i+1G2j+2 − G2i+1G2j = 0, (22)

6
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G2iG2j+2 − G2iG2j = βG2i+2j+2, (23)

G2iG2j+3 − G2iG2j+1 = βG2i+2j+3, (24)

G2i+1G2j+1 = 0, for i, j � 0. (25)

We just note here that this can be proven by the use of the canceling mechanism [13]:

h

⎛
⎜⎜⎜⎝
G0

G1

G2

...

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
Ḡ0

Ḡ1

Ḡ2

...

⎞
⎟⎟⎟⎠ ⊗

⎛
⎜⎜⎜⎝
G0

G1

G2

...

⎞
⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎝
G0

G1

G2

...

⎞
⎟⎟⎟⎠ ⊗

⎛
⎜⎜⎜⎝
Ḡ0

Ḡ1

Ḡ2

...

⎞
⎟⎟⎟⎠ , (26)

where the local Hamiltonian hl = h(nl, nl+1 → n′
l , n

′
l+1) is written as an infinite-dimensional

transition matrix. In the canceling mechanism, one uses auxiliary tagged operators to write
the proof in a compact fashion. They read here explicitly:

Ḡ0 = G0 − β11, (27)

Ḡ2(i+1) = G2(i+1) + G2i , (28)

Ḡ1 = G1, (29)

Ḡ2i+3 = G2i+3 + G2i+1. (30)

In other words, this choice of auxiliary matrices solves the set of equations resulting from
(26). It is important to emphasize that (25) implies that the system cannot support more than
one odd gap. This can be understood directly from the dynamical rules (19). The fact that
the transition 100 → 010 is forbidden (p1 = 0) has the consequence that the number of odd
gaps decreases with time: a configuration C(. . . 1[any odd number of 0s]101| . . .) moves with
conditional probability β into a configuration with two odd-valued gaps less (creation of even
gaps), while odd gaps cannot emerge. These processes appear until there remain either no
more odd gaps (L−N even) or exactly one odd gap (L−N odd). In the latter case, this means
physically that the probability for odd gaps is of order 1/N and thus tends thermodynamically
to zero as predicted by the mean field.

One has to be careful with a unified description for an arbitrary number of odd gaps in the
system. The operators G are mathematical objects that can in our case be written as matrices
whose components are themselves matrices (compare [8, 18]). Thus it is not obvious how to
generalize the trace operation. The straightforward generalization to a sum of the traces of the
matrices on the main diagonal can here not be applied: this trace operation and therewith the
weight for certain configurations can incorrectly give zero. The problem of the trace operation
for periodic systems has previously been pointed out [16]. The matrix relation (25) implies
that (G2i+1)

2 = 0 for all i. For a unified description the operators G2i+1 had to be non-vanishing
nilpotent matrices. However for this equation to hold all the eigenvalues of G2i+1 must be
equal to zero. Therefore also tr G2i+1 = 0 which implies for example through relation (21)
that also tr G2iU1 = 0 which is untrue. Now this argument can be used successively to see that
for every N the straightforward trace operation cannot be applied. First, the algebra (21)–(25)
can be simplified:

G2i+1 = E iA and G2i = βE iD (31)

with new operators E and D. Then (21)–(25) reduces to

DE = D + E, (32)

7
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AE = A, (33)

βDA = A, (34)

A2 = 0. (35)

Introduce the two-by-two matrices 11 = |1〉〈1| + |2〉〈2|, 22 = |1〉〈2| and let further E =
E ⊗ 11,D = D ⊗ 11 and A = A ⊗ 22, with matrices E,D and A. Then one can interpret the
trace operation in (20) as F(n1, n2, . . . , nN) = tr

∥∥∏N
μ=1 Gnμ

∥∥, with the help of the matrix
norm ‖M‖ = maxi,jmij to obtain always the correct weights. A different method is for
example a parity-dependent matrix representation [13]. However, beyond the question of how
to obtain the correct matrix element it is most convenient to consider both cases separately.

5.2. Separate calculation of steady-state quantities

For even number of holes only even gaps occur in the stationary state. With the particles
always making two steps (100 → 001) the stationary process is completely equivalent to the
ASEP. All configurations with even-length gaps have the same stationary weight (the matrices
D and E are sufficient to describe the steady state and can be chosen as numbers). For the
normalization we find

ZL,N = L(L − M − 1)!

N !M!
δL−N,2M. (36)

This is easily interpreted combinatorially: for the first particle one has L possible ways to
place it on the lattice. One can then think of distributing N − 1 particles and M hole pairs into
N + M − 1 boxes to obtain the above expression. The flow (from site i) is the expectation
value

J = 〈τi(1 − τi+1)(1 − τi+2)〉 + β〈τi(1 − τi+1)τi+2)〉 = 〈τi〉 − 〈τiτi+1〉. (37)

With 〈τi〉 = N
L

and 〈τiτi+1〉 = N/L · (N − 1)/(L − M − 1) this yields asymptotically the
mean-field current (18). The exact form of the velocity for finite system size reads

v = 2
1 − ρ

1 + ρ

(
1 +

2

L + N
+ · · · +

2n

(L + N)n
+ · · ·

)
. (38)

For odd number of holes exactly one odd gap occurs in the steady state. If one considers only
stationary configurations relation (35) becomes redundant. The non-vanishing steady-state
weights from (20) can simply be written as

F(2n1, 2n2, . . . , 2nN + 1) = tr

⎡
⎣N−1∏

μ=1

EnμD

⎤
⎦EnN A. (39)

Here we referred to the particle with the odd gap in front as particle N. Due to the translational
invariance this can be done without loss of generality. The underlying algebra reduces to

DE = D + E, AE = A and βDA = A. (40)

This is the algebra for the ASEP with a single defect particle [3] for the case α = 1. This
process is defined by transitions 10 → 01 at rate 1, 20 → 02 at rate α = 1 and 12 → 21 at rate
β. In fact, the stationary states of both processes are completely equivalent. In our process
even gaps of length 2n are mapped onto gaps of length n in the defect ASEP (00 becomes 0).
Now consider the single odd gap with the particle to its right. It can be written in the form
00 00 · · · 01. Again 00 is mapped onto 0 and 01 becomes the defect 2. One can check that
under this mapping indeed (19) recovers the transitions of the defect ASEP. Note that α = 1

8
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takes care of the (physically reasonable) fact that in our process particles with an even or odd
gap to their left move forward at the same rate.

As for the defect ASEP the partition function can be calculated:

ZL,N = L

N

(
N + M

N − 1

) ∞∑
m=1

m

(
N + M − 1

N − m

) (
1 − β

β

)m−1

δL−N,2M+1. (41)

From this expression correlation functions can be derived as above. It turns out that the flow
is related to the normalization by

J = 2
N

L − 2

ZL−2,N

ZL,N

+ β
L − N

L − 1

ZL−1,N−1

ZL,N

. (42)

We have calculated the finite size expansion for the velocity in the case β = 1 and obtained

v = 2
1 − ρ

1 + ρ

(
1 +

5/2

L + N
+ · · · +

(1 + 3n+1)/4

(L + N)n
+ · · ·

)
. (43)

The important thing is that the correction is of order 1/(L + N) which of course holds also for
β �= 1.

To summarize in both cases (even and odd number of holes) the velocity of particles is
given by

v = 2
1 − ρ

1 + ρ
+ O

(
1

L + N

)
. (44)

Just the special form of the correction differs for even and odd number of holes.

5.2.1. Finite number of particles. Let us consider as a special case only two particles and an
arbitrary number of sites. If L is even, then the number of holes is even. The probability for
odd headway is zero and for even headway simply P(2n) = 2/L. If L is odd the weights are
of the form f (2l + 1, 2m) = 1 + lβ. The probability for a certain even distance is in this case

P(2k) = TrG2kUL−2−2k

Tr (G0UL−2 + U1GL−3) + · · · , (45)

and for an odd distance equivalently

P(2k + 1) = TrU2k+1GL−3−2k

Tr(G0UL−2 + U1GL−3) + · · · . (46)

Working this out yields explicitly

P(2k + 1) = 1 + kβ

2(1 + c)
(
1 + c

2β
) and P(2k) = 1 + (c − k)β

2(1 + c)
(
1 + c

2β
) , (47)

with the abbreviation c = (L − 3)/2. The two-particle weights f (2l + 1, 2m) (with one odd
headway and one even headway) are independent of m as a consequence of (22) or equivalently
AE = A in (40). However this quantity enters in the probability for an even headway as
c − k.

Consider now three particles. The triangles and stars in figure 3(a) show the simple
distribution that is obtained for total even number of holes (here L−3 = 100 sites). For a better
visibility the symbols are not connected by a line. For L−3 odd we find from the matrix product
equivalently as above the weight f (2l + 1, 2m, 2j) = 1 + (l + j)β +

(
l(l+1)

2 + lj
)
β2 from which

the headway distribution can be calculated. This distribution again does not depend explicitly
on m as a consequence of AE = A. In terms of a scaling function x = 2(k + 1)/L which
equals (n + 1)/L for n odd one finds the scaling form P(2k + 1) ∼ x(1 − x) for odd headway.
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Figure 3. Headway distribution P(n) for p2 = 1, p1 = 0 and β = 1 for N = 3 and 4 and L = 102
and 103.

The probability for even headway scales asymptotically: P(2k) ∼ (1−x)(1−x + 2/L). As a
consequence of these formulae the curve for an odd headway (the circles in figure 3(a)) crosses
the curve for even headway (the squares) at approximately x = 1/2 which is astonishing. One
sees the remarkable change of the distribution by adding a single empty site to the system.
Figure 3(b) shows the case of four particles. Remember that for increasing particle number
the probability P(2k + 1) vanishes as N−1 goes to zero which is correctly predicted by the
mean field. For the thermodynamic limit, one might directly make use of the density profile
[2, 3].

5.2.2. The phase transition. It is interesting that the single ‘excess hole’ created by the
dynamics leads to effects also in the thermodynamic limit. Although the probability P(n)

as predicted by the mean field is thermodynamically exact, the system reaches no product-
measure steady state, since around the defect a nontrivial density profile is formed. Beyond
that a phase transition takes place equivalent to a transition in the defect ASEP [3]. In terms
of the different densities (ρ in the (defect) ASEP becomes here 2ρ/(1 +ρ)) the critical density
is ρc = β/(2 − β). In the following let us in analogy refer to the 01-pair as the defect. Since
we have α = 1 the phase diagram of the defect ASEP reduces to a single line.

• For ρ > ρc the defect behaves as the other particles. In front of the defect the density
profile decreases exponentially to its bulk value. The density behind is constant.

• For ρ < ρc the defect is similar to a second-class particle [21] that lowers the average
speed of the other particles. The density profile decays algebraically to the bulk value.
Behind the defect the density is decreased and the profile increases in the same way to its
bulk value as in front. The profile is the limit of a shock profile with equal densities to
the left and right.

From the relation to the defect ASEP one can obtain the probabilities P(2n + 1) for odd
headway. For example, P(1) is related to the probability ρ− in [3] to find a particle directly
behind the defect. Since in our process the defect can be any of the N particles one has

[P(1)](ρ) =

⎧⎪⎪⎨
⎪⎪⎩

4ρ2

βN(1 + ρ)2
, for ρ < ρc,

2ρ

N(1 + ρ)
, for ρ > ρc.

(48)
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Figure 4. P(1) versus ρ for β = 2/3. See the text for details.

Figure 4 shows P(1) scaled with N versus the density for β = 2/3, so that the phase transition
happens at ρc = 1/2. Depicted are the analytic formulae from (48) together with a computer
simulation for L = 1000 with N increased in steps of 	N = 25.

5.3. Relation with generalized zero-range processes

In the previous section, we expressed the steady state of the system through the set of gaps
between particles. This formally corresponds to a mapping onto a model in which a site
occupied by particle μ becomes site μ and the gap nμ−1 to the left becomes the ‘mass’ on site
μ. The ansatz (20) then becomes site oriented. The corresponding process comprises N sites
and M := L − N particles. In the process obtained from (19) by this mapping one or two
particles may leave a certain site with rates:

γ (l|m) =
{

1, for l = 2,m > 1,

β, for l = 1,m = 1.
(49)

However, this is a special case of the class of generalized zero-range processes introduced by
Evans et al [7] and referred to as ‘mass-transport models’ (MTM). They derived a necessary and
sufficient condition for the steady state to factorize, i.e. P(m1,m2, . . . , mN) ∝ ∏N

ν=1 f (mν).
The condition on the chipping functions γ reads [7, 17]

γ (l|m) = w(l)f (m − l)

f (m)
, for l = 1, . . . , m (50)

where w(l) is an arbitrary non-negative function of l. For the process (49) the situation is
slightly more special. Here we have a factorized steady state only for even mass and thus it
is not predicted by (50). In our rather singular case, involving vanishing single-site weights,
(50) is not fulfilled, as is easily seen for γ (1|m). To understand this, let us consider a slightly
more general case. Assume general single-site weights that vanish for odd masses as is the
case for (49). Considering the master equation shows that the restrictions for the chipping
function to recognize the factorized state for M even are

γ (l|m + l) =

⎧⎪⎪⎨
⎪⎪⎩

free, for m + l odd,

0, for l, m both odd,

x(l)f (m)

f (m + l)
, for l, m both even.

(51)
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However the choice for f (m) in turn implies that the total mass M = ∑L
i=1 mi is even.

Otherwise the normalization

ZN,M =
∑
{mi }

δ

⎛
⎝M −

∑
j

mj

⎞
⎠ N∏

i=1

f (mi) (52)

would vanish. The solution can be used to obtain new solvable models: the process (49) leads
to a matrix-product state for the choice of M for which the system cannot reach the factorized
state. This suggests that the general model (51) with odd particle number (defined through
the weights for even M) may also lead to a matrix-product state by special choice of the free
parameter in (51). Of course these arguments can be generalized to other choices of vanishing
weights [13]. Beyond that, the single-site mass-distribution should equal thermodynamically
the result obtained from the case where it is factorizable, since in the infinite system a local
perturbation changes the density profile but not the single-site distributions. This way one
can obtain the exact distributions also for cases where the steady state has not generally a
product measure. Some focus has recently been placed on two-species zero-range processes
and conditions for a factorized steady state [6]. We consider model parameters that violate
this condition. Denote the number of first-class particles on site l by nl and the number of
second-class particles as ml . The rates u(n,m) and v(m, n) at which first- and second-class
particles move are taken as

u(n,m) = 1, for n � 1, (53)

v(m, n) = β[1 − θ(n)], for m � 1. (54)

The motivation for this choice is simply that the steady state of the MTM (and equivalently
(19)) corresponds to the case of a single two-particle here (pairs of particles in the mass-
transport model are mapped onto one-particle in the ZRP, and the single excess particle
is mapped onto the two-particle). The resulting algebra then also becomes a consequence
of (40).

6. Conclusion and outlook

To summarize, a simple traffic model that generalizes the ASEP with periodic boundaries has
been considered. In this continuous-time process, particles can move one or two sites to the
right. This mimics a larger maximum velocity of cars that is typical for discrete traffic models
[23]. Some preliminary results have already been published [24]. We considered choices
of hop rates that are not appropriate for modeling traffic but are of theoretical interest. A
mean-field theory in comparison with simulations showed that the headway distribution of
particles shows even/odd oscillations. We considered a special choice of the parameters (see
(19)) for which the oscillations become maximal. The matrix-product ansatz was generalized
to obtain the exact solution for finite number N of particles and sites L. Thermodynamically a
crucial phase transition appears: particles move at their desired maximum velocity vmax which
leads to the formation of headway being a multiple of vmax. If there remains smaller headway,
then it moves through the system against the direction of motion as a sort of defect. This
defect (being somewhere in the system) changes locally the density profile but not the headway
distribution of a single particle. Therefore, the system is not described by a product measure
although the asymptotic headway distribution is given by the mean-field result. Instead the
solution is the matrix-product state for the ASEP with a single defect [3]. Note that the process
with parallel dynamics leads to a similar stationary state with additional attraction between
particles and hole pairs and can also be solved [8].
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We established a relation between non-ergodic exclusion processes with higher velocities,
generalized zero-range processes (ZRP) and defect systems. This way one can calculate exact
quantities without knowing the exact density profile. For future work it is interesting to
investigate the connection between systems with creation and annihilation of ‘defects’ and
generalized ZRP to be able to handle ergodic dynamics without parity dependence.

The condition for a simple factorized state in the ASEP considered here is that the rate at
which a particle moves a certain number of sites is independent on the headway. This condition
holds also for parallel dynamics [25] and higher vmax. We investigated a slightly more general
parameter line, where the rate at which a particle changes its headway does not depend on its
headway which allows for oscillations in the headway distribution. The mean-field assumption
leads to a remarkable agreement with computer simulations. We pointed out the Fibonacci
case whose corresponding mass-transport model (on two sites) has a factorized steady state.
The single-site weights become Fibonacci numbers s(n) = Fn+1. The recursion relation (2)
becomes f (m, n) = f (m − 1, n) + f (m − 2, n), for m � 2, which can be expressed as a
matrix-product state f (m, n) = tr(DEmDEn) with DEE = DE + D. This is an interesting
new diffusion algebra [26]. However neither the factorization nor the matrix recursion hold for
more than two particles. So this case remains unsolved. A comparable good agreement with
mean field has been observed previously for the ASEP with shuffled update [27] where also
the two-particle state is factorizable. It would be interesting to find out whether the mean-field
result in these models is generally exact although the process does not have a product measure.
Beyond that, the connection between the solvability for two particles and N particles is still
an open problem. Here one might be able to profit from knowledge in equilibrium statistical
mechanics [28].
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